Search results for "MESH : Lactic Acid"
showing 3 items of 3 documents
Effect of reducing agents on the acidification capacity and the proton motive force of Lactococcus lactis ssp. cremoris resting cells.
2002
International audience; Reducing agents are potential inhibitors of the microbial growth. We have shown recently that dithiothreitol (DTT), NaBH(4) and H(2) can modify the proton motive force of resting cells of Escherichia coli by increasing the membrane protons permeability [Eur. J. Biochem. 262 (1999) 595]. In the present work, the effect of reducing agents on the resting cells of Lactococcus lactis ssp. cremoris, a species widely employed in dairy processes was investigated. DTT did not affect the acidification nor the DeltapH, in contrast to the effect previously reported on E. coli. The DeltaPsi was slightly increased (30 mV) at low pH (pH 4) in the presence of 31 mM DTT or 2.6 mM NaB…
Screening of lactic acid bacteria for reducing power using a tetrazolium salt reduction method on milk agar.
2013
WOS:000315703100020 ; www.elsevier.com/locate/jbiosc; International audience; Reducing activity is a physiological property of lactic acid bacteria (LAB) of technological importance. We developed a solid medium with tetrazolium dyes enabling weakly and strongly reducing LAB to be discriminated. It was used to quantify populations in a mixed culture (spreading method) and screen strains (spot method).
Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli.
2000
ABSTRACT Wild-type Escherichia coli K-12 ferments glucose to a mixture of ethanol and acetic, lactic, formic, and succinic acids. In anoxic chemostat culture at four dilution rates and two different oxidoreduction potentials (ORP), this strain generated a spectrum of products which depended on ORP. Whatever the dilution rate tested, in low reducing conditions (−100 mV), the production of formate, acetate, ethanol, and lactate was in molar proportions of approximately 2.5:1:1:0.3, and in high reducing conditions (−320 mV), the production was in molar proportions of 2:0.6:1:2. The modification of metabolic fluxes was due to an ORP effect on the synthesis or stability of some fermentation enzy…